首页> 外文OA文献 >An efficient parallel algorithm for O(N^2) direct summation method and its variations on distributed-memory parallel machines
【2h】

An efficient parallel algorithm for O(N^2) direct summation method and its variations on distributed-memory parallel machines

机译:O(N ^ 2)直接求和方法的高效并行算法及其在分布式内存并行机上的改进

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a novel, highly efficient algorithm to parallelize O(N^2) direct summation method for N-body problems with individual timesteps on distributed-memory parallel machines such as Beowulf clusters. Previously known algorithms, in which all processors have complete copies of the N-body system, has the serious problem that the communication-computation ratio increases as we increase the number of processors, since the communication cost is independent of the number of processors. In the new algorithm, p processors are organized as a $\sqrt{p}\times \sqrt{p}$ two-dimensional array. Each processor has $N/\sqrt{p}$ particles, but the data are distributed in such a way that complete system is presented if we look at any row or column consisting of $\sqrt{p}$ processors. In this algorithm, the communication cost scales as $N /\sqrt{p}$, while the calculation cost scales as $N^2/p$. Thus, we can use a much larger number of processors without losing efficiency compared to what was practical with previously known algorithms.
机译:我们提出了一种新颖的,高效的算法,用于在分布式内存并行机(例如Beowulf集群)上对具有各个时间步长的N体问题的O(N ^ 2)直接求和方法进行并行化。其中所有处理器具有N体系统的完整副本的先前已知算法具有严重的问题,即通信成本随我们增加处理器数量而增加,因为通信成本与处理器数量无关。在新算法中,p个处理器被组织为$ \ sqrt {p} \ times \ sqrt {p} $二维数组。每个处理器都有$ N / \ sqrt {p} $个粒子,但是如果我们查看由$ \ sqrt {p} $个处理器组成的任何行或列,则数据的分布方式将显示完整的系统。在该算法中,通信成本缩放为$ N / \ sqrt {p} $,而计算成本缩放为$ N ^ 2 / p $。因此,与以前已知的算法相比,我们可以使用更多数量的处理器而不会降低效率。

著录项

  • 作者

    Makino, J;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号